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Abstract

Manually editing highlight moments such as layouts in
ultimate frisbee games is a time-consuming and labor-
intensive process, especially for long videos exceeding 1 hr
like frisbee matches. Layouts, where players dive to catch
for the disc, are among the most exciting and sought-after
actions to capture in a frisbee game. This project presents
a proof of concept for an automated approach that uses
multimodal large langauge model (MLLM) with adaptive
keyframe sampling (AKS) to detect layout highlights in fris-
bee games based on carefully designed prompts. The multi-
modal model performance is compared to a traditional ob-
ject detection YOLOVS model. Our mutlimodal model out-
performed YOLOVS, achieving a perfect recall (1.000) and
the highest F1-score (0.583) for the prompt recognizing div-
ing actions toward a frisbee as the key layout indicator. The
multimodal model performance significantly improved with
video grid splitting, but demonstrated sensitivity to linguis-
tic variations of prompts. In contrast, YOLOvVS8 model strug-
gled with detecting small, fasting-moving objects such as
frisbee discs, particularly in low-resolution or occluded ob-
jects. These findings highlight the potential of multimodal
models to enhance the reliability of highlight detection in
sports videos, while significantly reducing editing time.

1. Introduction

In today’s fast-paced digital world, highlight reels for
sports leagues have become an essential marketing tool to
maintain fan engagement on social media. However, cre-
ating these highlight reels is a time-consuming and labor-
intensive process that requires hours of manual editing of
footage. In addition, expert knowledge of sports teams
and rules is required to identify key moments in a game.
Our project aims to automate the generation of highlight
reels for ultimate frisbee games by detecting layout high-
lights using a Multimodal Large Language Model (MLLM)
integrated with a novel adaptive keyframe sampling (AKS)
method. A layout is when a player dives for the disc and can
be one of the coolest and most exciting moments in a fris-
bee game. Automating highlight selection for frisbee games

has not been attempted before, which offers a promising so-
lution to save hours of manual editing while improving the
quality and reliability of layout detection.

Automating layout detection in ultimate frisbee games
faces two core challenges. First, the dynamic nature of
layouts involving rapid body movements like jumping, div-
ing, and catching disc requires precise disc detection and
motion recognition, which existing object detection like
YOLO models and pose estimation models often struggle
with. Second, the length of frisbee games demands long-
video analysis, which exceeds the token limits of standard
MLLMs. This is usually tackled by oversimplifying sam-
pling of clips that could significantly overlook key mo-
ments. To address these challenges, we proposed a mul-
timodal framework combining video-based MLLMs with
AKS to automatically detect layout highlights in frisbee
games. The multimodal model detected layouts based on
carefully crafted prompts fed into the MLLM without re-
quiring object labels. This mutlimodal approach is also
compared to the performance of layout detections using
YOLOV8 model to demonstrate the limitations of traditional
object detection models in detecting frisbee discs.

2. Related Works

Previous CS231n course projects have provided relevant
references for our topic of highlight generation. The auto-
matic game highlight detection project employed 2D Con-
volutional Neural Network (CNN), 3D Residual Network
CNN (ResNet3D), and Vision Transformer (ViT) models to
detect soccer highlights using manually labeled clips from
full-length games [1]. The results show that all models
achieved moderate recall, but low precision due to the com-
plexity of event detection in dynamic environments like
soccer, which could inform similar performance in frisbee
layout detection [1]. The rock-climbing pose estimation
project used a vision transformer for pose estimation (ViT-
Pose) and YOLOv8 for human detection to analyze rock
climbing techniques from videos [2]. The project results
show high precision values, but low recall values due to fail-
ures in pose estimation [2].

Building upon insights from previous course projects, it
is evident that computer vision-based methods using deep



learning for object detection and pose estimation face sev-
eral limitations when applied to dynamic sports like fris-
bee layouts. Various factors are reported in the literature
that make the task of detecting and tracking both play-
ers and balls very difficult. These include similar appear-
ances of objects, complex occlusions, varying background,
lower pixel resolution of distant and smaller objects in the
frame, unpredictable movements, unstable camera motion,
and motion blur [3]. These challenges are directly applica-
ble to frisbee where players often move rapidly, layouts can
be obscured, and frisbee discs can be blurred or too small
to detect. The model combining object detection with pose
estimation to identify successful layouts might fail due to
the mentioned reasons.

Given the limitations of object detection and pose esti-
mation models in sports, exploring alternative approaches
to detecting highlights in videos becomes imperative. One
promising direction is the adoption of multimodal mod-
els that integrate different data types such as visual, au-
dio, and text. Such multimodal models have been inves-
tigated in highlight detection in sport, including a multi-
modal system using 2D CNNs on Mel-spectrogram for au-
dio and grayscale video frames to detect highlights in soc-
cer games [4]. This approach achieved 89% accuracy for
audio-based detection and 83% for video-based detection
[4]. To enhance performance, the paper developed an en-
semble model that averages the audio and video scores to ef-
fectively reduce both false positive and false negative detec-
tions compared to single-modality models [4]. Other efforts
include introducing MLLM models such as the Highlight-
CLIP (HL-CLIP) that leverages the pretrained CLIP model
to improve highlight detection in videos [5]. HL-CLIP fine-
tunes CLIP’s vision and text encoders to detect video high-
lights by predicting saliency scores between video games
and text queries [5]. However, processing long videos such
as frisbee games remains challenging due to computational
constraints with CLIP’s ViT encoder or even 2D CNN au-
dio and text ensemble models that only work effectively on
short clips.

Video-based MLLMs mainly sample a small number of
tokens from input data to not exceed the maximal token
limit of MLLMs. To mitigate this length constraint, the
Adaptive Keyframe Sampling (AKS) method has been pro-
posed to maximize the useful information during keyframe
selection in analyzing videos with MLLMs [6]. This is done
by maximizing the relevance between the keyframes and
the prompt as well as the temporal coverage of keyframes
throughout the long video [6]. The AKS method has signif-
icantly reduced the computational cost, which allows multi-
modal models to process long videos more efficiently, while
preserving key useful information [6]. In our project, we
use the AKS method with video-based MLLMs to automate
highlight detection and reel generation in frisbee games fo-

Multimodal Large Language Model

Figure 1: Schematic diagram for the multimodal framework
combining video-based MLLMs with AKS to detect layout
highlights in frisbee games

cusing on identifying key layout moments.

3. Methods

Our method was based on a multi-modal framework,
as shown in Figure 1, combining video-based MLLMs
with AKS to first detect highlight layouts in frisbee games.
The training starts by feeding the raw videos of the fris-
bee games into the image-text encoders of BLIP. The raw
video was trained at 1 fps as recommended by the adaptive
keyframe sampling paper to reduce computational costs.
The role of the image-text encoder is to compute a relevance
score for each candidate frame against the query prompt.
The adaptive keyframe selection (AKS) algorithm then acts
as a smart filter before the MLLLM step by selecting the most
useful keyframes. This is done by maximizing the relevance
and coverage scores. Based on recursive temporal binning,
the algorithm splits the video into segments and allocates
keyframe slots proportionally for each segment. The al-
gorithm then performs hierarchical selection by selecting
frames with highest relevance scores in each segment. If
the segment has no high-scoring frames, then the algorithm
redistributes the slots to action-rich segments. To match the
token limit of the MLLM LLaVA-Video model, the AKS
algorithm is run to select 64 frames from each video.

The most critical part of our multimodal framework was
designing the prompts to guide the MLLM LLaVA model.
The keyframes selected by the AKS algorithm were fed into
the LLaVA-Video model with task-specific prompts. This
step requires careful prompt engineering to let the MLLM
focus on layout-specific features. The prompts were itera-



Table 1: Description of video prompts and experimental setup

#  Prompt Video Length (min) Video Grid

P1  Is someone diving to try to catch a frisbee? 5 None

P2 Is any player on the field horizontal? 5 None

P3  Is an ultimate frisbee player doing a layout? 5 None

P4 TIs there someone diving for the frisbee and, if so, are they on offense or 5 None

defense?

PS5  Is any player’s body parallel to the ground? 5 None

P6  Is someone diving towards a frisbee? 5 None

P7 Do two people jump high to compete to catch the frisbee? 5 None

P8  Is someone diving towards a frisbee? 5 split into 4 quadrants
P9 Do two people jump high to compete to catch the frisbee? 5 split into 4 quadrants

P10  Is someone diving towards a frisbee?

30 split into 4 quadrants

tively refined by gradually introducing specificity and con-
text as shown in Table 1. The model was trained first on
broad prompts aimed at general layout detection including:
”P1: Is someone diving to try to catch a frisbee?” and “P2:
Is any player on the field horizontal?”. The refined prompts
then added more specific context including: “P4: Is there
someone diving for the frisbee and, if so, are they on offense
or defense?”. In addition, ”P7: Do two people jump high to
compete to catch the frisbee?” was tested to capture a differ-
ent type of highlight known as skies where two players jump
in competition to catch the disc. The responses to these
prompts were then used to identify and extract timestamps
from key layout moments, which could be subsequently ag-
gregated for highlight video compilation.

In total, 10 prompts (Yes or No questions) were tested in
this project, 7 of which were unique (P1 -P7). The remain-
ing 3 prompts (P8 - P10) were repeated across different ex-
perimental setups to evaluate the effect of video length and
grid resolution on our multimodal model (explained in sec-
tion 4). The prompts were intentionally designed to cap-
ture a range of visual tasks needed to detect layouts, includ-
ing action recognition, assessing spatial orientation, and ob-
ject interaction. For example, P1 targets action recognition
of someone diving to a catch a frisbee, P2 attempts to as-
sess the spatial orientation of a player’s body in relation to
the field, and P7 focuses on object interaction between two
players competing to catch the frisbee. These prompts were
also designed to test the prompt sensitivity to linguistic vari-
ations. For example, ”P2: Is someone diving to catch a fris-
bee?” versus “P6: Is someone diving towards a frisbee?”
and ”P2: Is any player on the field horizontal?” versus ~’P5:
Is any player’s body parallel to the ground?”.

The layout detection pipeline was implemented by
adapting the Adaptive Keyframe Sampling (AKS) for Long
Video Understanding algorithm from its official GitHub
repository to fit the specific demands of our project [7].
AKS was particularly well-suited for our application in de-
tecting layout highlights in frisbee games because it strate-

gically balances relevance and coverage. This approach en-
sures that the final keyframe set is both semantically rich
and temporally diverse, which are critical qualities for gen-
erating reliable responses from the MLLM. Therefore, AKS
was selected over uniform or random sampling because it is
proven to prioritize rare, high-value events, while minimiz-
ing redundancy in the visual input [6].

To evaluate the effectiveness of our multimodal model
with AKS, we conducted a comparative experiment using
YOLOVS (You Only Look Once), a real-time object detec-
tion model. YOLO detects objects in a single forward pass
by dividing each frame into a grid and predicting the bound-
ing boxes and class probabilities for each cell simultane-
ously [8]. We trained YOLOV8 on layout videos to assess
the performance of the model in detecting players and fris-
bee discs during layout moments. This comparative exper-
iment allowed us to assess the limitations of traditional ob-
ject detection models in capturing dynamic actions like lay-
outs against our proposed multimodal approach with AKS
sampling.

The performance of our multimodal model to detect key
layout highlights was evaluated using quantitative metrics
computed based on the manually annotated dataset. A con-
fusion matrix was constructed to assess layout detection
(successful vs. unsuccessful). The accuracy, precision, re-
call, and F1-score were computed as our main quantitative
metrics to evaluate our model as shown in Eq.1-4. Although
these metrics provide qualitative performance measures, it
is critical to acknowledge that their reliability inherently
depends on the qualitative judgment of the human anno-
tators who labeled the ground truth. Our evaluation also
includes qualitative analysis of baseline YOLOvVS8 experi-
ments to emphasize on the limitations of traditional detec-
tion models for sports highlight generation, specifically for
frisbee games.
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4. Dataset

The main training data of our multimodal layout detec-
tion model was collected from the Mixed Final of the 2024
USA Ultimate National Championships featuring the match
between Hybrid and Sprocket [9]. Due to the time con-
straint of the project, we only extracted two test videos of
different durations including 5 min video and 30 min video
to analyze the performance of our model for different video
lengths. Each video was segmented into 5-second clips to
provide enough time to capture the layout moments, but also
keep it short enough to avoid excessive content. For eval-
uation purposes, a dataset was manually prepared by anno-
tating the 5-second clips in both the 5 min video and 30
min video to establish the ground truth. This is done by
manually labeling successful layouts and no layouts to each
5-second clip. Prompts P1 - P9 were tested using the 5 min
video that contained 6 successful layouts, while prompt P10
was tested using the 30 min video that contained 24 success-
ful layouts.

For prompts P8 - P10, we introduced an additional pro-
cessing step to investigate the effect of video grid resolution
on the performance of the model. In this experiment setup,
the full video frame was divided into 4 quadrants and each
quadrant was split into 5-second clips. This grid-based ap-
proach aimed to increase the grid resolution, especially for
detecting smaller, fast-moving objects like a frisbee disc.
The underlying mechanism was that in most successful lay-
outs, the action of a layout and the disc should appear in at
least one quadrant of a given keyframe.

To validate the need for an alternative multimodal ap-
proach, we conducted two trials with YOLOvS to detect
players and discs. The first trial was trained on verti-
cal YouTube shorts of layout shots in frisbee games [10].
Different data augmentation was experimented on the first
trial including zooming, cropping, and contrast adjustment.
The second trial was trained on higher resolution horizon-
tal videos (1080p) [ 1]. The successful detection of players
and frisbee discs was qualitatively evaluated for both trials
at different confidence levels.

5. Experiments
5.1. Multimodal Model with AKS

Table 2 shows the performance metrics including accu-
racy, precision, recall, and F1-score for all prompts tested

to detect layout highlights in frisbee games using the mul-
timodal model with AKS. Accuracy serves as the overall
general indicator of the model’s effectiveness by measur-
ing the ratio of correctly predicted clips to the total num-
ber of clips. The accuracy across prompts range from a
low of 0.138 (P4) to a high 0.957 (P8), which suggests that
some prompts were significantly more effective in guiding
the MLLM to detect specific layout features.

Table 2: Performance metrics for all prompts

Prompt# Accuracy Precision Recall Fl-score
P1 0.879 0.400 0.333 0.364
P2 0.897 - - -
P3 0.862 0.333 0.333 0.333
P4 0.138 0.077 0.667 0.138
P5 0.897 - - -
P6 0.879 0.429 0.500 0.462
P7 0.828 0.000 0.000 0.000
P8 0.957 0.412 1.000 0.583
P9 0.914 0.136 0.750 0.231

P10 0.924 0.040 0.167 0.065

Nearly all prompts achieved accuracy scores above
0.800, except for P4 "’Is there someone diving for the fris-
bee and, if so, are they on offense or defense?”. This prompt
also had a significantly high number of false positives (48)
compared to the rest of the prompts, as shown in the con-
fusion matrix in Figure 2. This could be due to the fact
that Prompt P4 is compound and semantically more com-
plex than the rest, as it not only requires the model to detect
the diving action, but also to infer the player’s role (offense
or defense). Therefore, this suggests the model’s limita-
tion in handling compound prompts and understanding role
recognition within dynamic events like frisbee.

The results overall show the critical role of prompt en-
gineering in achieving reliable model performance not only
in terms of accuracy, but also in precision, recall, and F1-
score. Precision measures the ratio of true positive predic-
tions compared to all positive predictions, while recall mea-
sures the ratio of true positive predictions compared to all
actual positive labels. Prompts P2 and P5, which aimed to
assess the spatial orientation of a player’s body in relation to
the field, failed to detect any layouts. As a result, precision,
recall, and F1-scores were not computed for these prompts
because they produced neither true positives nor false posi-
tives in their respective confusion matrices in Figure 2. This
outcome suggests that spatial body orientation might not be
a significant factor to be considered for detecting layouts
using MLLMs.

Prompts focused on diving actions, such as P1, P6, and
P8 achieved higher precision and recall compared to P3,
which specifically asked about layouts. This suggests that
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Figure 2: Confusion matrices for all prompts

Figure 3: Successfully detected layout using the multimodal model with AKS for prompt P8

the model is more effective at identifying general move-
ments like diving rather than more context-dependent ac-
tions such as layouts in frisbee. In addition, the linguis-
tic variation between P1 ”’Is someone diving to try to catch
a frisbee?” and P6 Is someone diving towards a frisbee?”
highlights the model’s sensitivity to prompt phrasing. While
both prompts target diving actions, P6’s more general phras-
ing led to improved precision and recall compared to P1.
This indicates that even subtle differences in wording could
influence how effectively the model responds to prompts.

Recall, which is a measure of the true positive rate, is
a critical metric for the task of highlight detection. The
best-performing model on the 5 min video with no grid
splitting was prompt P6 and yet it only achieved a recall
of 0.500. Upon closer inspection to the layout frames, we
observed that prompt P6 mainly detected layouts that are
zoomed in closest to the camera. This finding motivated us
to experiment with splitting the video grid into 4 quadrants,
which significantly improved both the accuracy and recall
of prompts P8 and P9 compared to P6 and P7, respectively.

Prompt P8 significantly outperformed all other prompts
including P9 in the grid-split videos with highest recall of
1.000 and highest F1-score of 0.583. While P9 targeted a
different type of highlight, skies, it did not perfrom as well

as P8, which focused on diving actions. This performance
gap may indicate that layouts are more visually distinctive
and prominent within the gameplay, making them easier for
the model to detect. The results suggest that diving related
actions are more reliably captured by the model than other
highlight types like skies, which might be more context-
dependent.

Prompt P8 also interestingly detected 7 layouts out of
the actual 6 present in the 5 min video as shown in the
confusion matrix in Figure 2. This happened because one
layout spanned across two grid quadrants in the frame that
led to this duplicate detection. However, this minor dupli-
cation could be resolved by implementing a simple post-
processing rule that considers only one layout detection per
set of 4 grid quadrants in a frame. This will ensure that
overlapping detections are merged into a single event. The
model for prompt P8 only mislabeled 10 out 225 clips as
shown in the confusion matrix in Figure 2. Upon inspect-
ing the false positives, we found that 3 out of 10 were in-
stances considered as “skies” moments when two players
jump very high in competition for the disc. This indicates
that the model sometimes mistook another common high-
light for a layout, which is still worthy and valuable for ed-
itors creating highlight reels.



The model for prompt P8 detected 16 clips (equivalent
to 1 min and 20 sec) as potential layouts in the 5 min video,
6 of which were true layouts. This means a video editor
would only need to review 26.6% of the total footage to find
all layout moments, which significantly reduces the time
spent reviewing film to capture key highlights. This level
of performance could be highly useful for content creators
making highlight reels. In addition, Figure 3 shows an ex-
ample of a successfully detected layout within a 5 sec clip
in the red circle for prompt P8. While the underlying clip
was divided in grids during processing to test P8, the clip
shown in Figure 3 is an aggregated segment to provide a
clear view of the detected highlight.

The video length had a significant impact on multimodal
model performance. For example, prompt P8 achieved a
strong precision and recall on a 5 min video, while the
same prompt in P10 with identical grid-splitting strategy
performed poorly with very low precision and recall on a 30
min video. One key reason for this drop in performance is
difference in the relative density of layouts in the videos be-
tween P8 and P10. For P8, the 5 min video contained 6 lay-
outs, which could give 1 layout every 50 sec. In contrast, for
P10, the 30-min video had 24 layouts, which could give 1
layout every 75 sec. This lower frequency of relevant events
in the longer video makes it difficult for the model to cor-
rectly identify true positives among a much larger pool of
mostly irrelevant content even with AKS sampling method.

Overall, detecting layouts in longer videos with multi-
modal model proposed in this paper remains feasible by di-
viding them into shorter segments. For example, process-
ing a 5 min video with grid splitting took approximately
10 mins, and the 30 min video took roughly 1 hr. By
splitting the longer videos into smaller chunks, the model’s
performance can be preserved, while remaining within the
model’s input capacity limits. However, further testing on
a wider range of video lengths, diverse datasets, and addi-
tional prompts is necessary to fully assess the mutlimodal
model’s capacity. Due to time constraints, our current eval-
uation focused on just two video durations, while we prior-
itized prompt experimentation.

5.2. YOLO Experiments

The results for the first trial of frisbee YouTube shorts
trained on YOLOVS overall showed poor performance in
detecting players and frisbee discs using the standard pa-
rameters of a confidence level of 0.3. The detection of play-
ers was improved when the confidence level was reduced to
0.1, but the model struggled detecting the disc. In the ef-
forts of improving the detection of discs, we experimented
with zoomed-in shots where the player was successfully de-
tected as a “person” and partially identified the disc as a
“sports ball” as shown in Figure 4a. In the following frame
of the same clip, the model failed to detect the disc as it was
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Figure 4: YOLO detection results on vertical videos for
(a) zoomed-in shot successfully detecting players and ball,
(b) following frame in zoomed-in shot failing to detect fris-
bee disc, (¢) high-contrast shot successfully detecting play-
ers and frisbee disc, and (d) following frame in the high-
contrast shot failing to detect frisbee disc
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blended in with the white line as shown in Figure 4b.

We also experimented with increasing the contrast in the
zoomed-in shots where the model successfully identified
the disc as a “frisbee” but at a low confidence level in Fig-
ure 4c. In the following frame of the same clip, the model
again failed to detect the disc even with increased contrast
as it blended with the white line as shown in Figure 4d. The
results also showed several misclassification errors such as
detecting the player’s hand as a “tennis racket” (Figure 4b)
and the player’s hand as a “baseball glove” (Figure 4d).

The results for the second trial with higher resolution,
horizontal videos of frisbee games showed improved per-
formance compared to the first trial with lower quality, ver-
tical videos. The model successfully detected frisbee discs
with high confidence for close-up shots in horizontal videos
as shown in Figure 5a and b. Increasing the confidence level
from 0.36 to 0.77, the model was able to reduce the misclas-
sification errors as shown in Figure 5. However, the model
still failed to detect frisbee discs in the second trial for
zoomed-out frames. Our experiments revealed core chal-
lenges in using YOLO for reliable highlight detection, es-
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Figure 5: YOLO results on higher resolution, horizontal
videos at confidence level (a) 0.36 and (b) 0.77.

pecially in identifying frisbee discs during layout moments.
While the model could identify frisbees in some zoomed-
in frames, the detection confidence remained inconsistently
low in low quality, vertical videos due to the small object
size, motion blur during fast throws, occlusions, and poor
contrast against background. Even though horizontal videos
improved the performance for zoomed-in shots, the model
failed to detect the frisbee disc on wider zoomed-out shots.

We could potentially further improve the performance by
raising the confidence levels to filter noise and false posi-
tives and process only high confidence detections of frisbee
discs. However, this approach could severely compromise
the recall value, which is an important qualitative metric for
identifying all key moments for layout detection. Due to
the trade-off between confidence level and recall as well as
YOLO'’s inability to handle small objects and occlusions,
we decided that YOLO suits real-time applications rather
than precision tasks like frisbee highlight detection. This
limitation is also data-dependent, as higher resolution inputs
and zoomed-in spatial features might mitigate the effects,
but not eliminate the core issue in detecting small objects in
dynamic environments.

Our experiments reveal clear differences between the
YOLOVS object detection model and the multimodal model
with AKS in layout highlight detection for frisbee games.
The multimodal model significantly outperformed the
YOLOV8 model, especially for prompt P8, which achieved
a perfect recall (1.000). The YOLO model proved to be lim-
ited for layout detection in frisbee games because YOLO
inherently fails to understand temporal sequences or ob-
ject interactions in dynamic actions like layouts. Therefore,
YOLO model only focuses on object detection to capture
what is present in a frame and not what happened. In ad-
dition, YOLO’s reliance on object visibility means it could

often miss highlights when objects are occluded, blurred, or
momentarily hidden.

On the other hand, the multimodal model with AKS is
designed to handle the challenges of traditional object de-
tection models. This is done by considering both human
pose estimation and temporal attention to detect motion pat-
terns over time. Rather than depending on labels, the multi-
modal approach focuses on coordinated human motion pat-
terns such as diving or catching. This means that it analyzes
the keyframes centered more around action recognition than
object detection, which could detect the essence of an event
across time even if the object is not always visible. Over-
all, the results show that the multimodal model with AKS
is a more reliable and scalable solution for identifying key
highlight moments like layouts in frisbee games.

6. Conclusions

This project presents a proof of concept demonstrating
the effectiveness of multimodal MLLMs with AKS in de-
tecting highlight-worthy actions, such as layouts in frisbee
games. The multimodal model with AKS significantly out-
performed traditional detection methods such as YOLOvS8
models in detecting layout actions in ultimate frisbee, which
struggled with detecting small, fast moving objects such as
frisbee dics. The multimodal model excelled in idenitfy-
ing diving actions to detect layouts, as shown by prompt "’Is
someone diving towards a frisbee?”, which achieved a per-
fect recall of 1.000 and the highest F1-score of 0.583 across
all prompts. Grid splitting played a crucial role in improv-
ing the detection performance of the model by helping the
model better localize and focus on action-specific regions
within each grid in a frame. Our results show that the mul-
timodal model not only improves the reliability of detection
precision, but also narrows down footage editors need to
review to just 26.6% of the full video, which significantly
reduces editing time.

However, the study has several limitations. It was con-
ducted on a small dataset for a single game due to time
constraints, which restricts the generalizability of the re-
sults. The model also showed sensitivity to linguistic vari-
ation in prompts. In addition, the multimodal model’s per-
formance may have been limited by the narrow range of
clip lengths and action types included in the dataset. Future
work could focus on expanding the dataset to include more
games, teams, filming styles, and camera angles to better
test the model’s generalizability. Varying clip lengths could
be tested including 3s, 5s, and 10s to investigate the effect
of temporal resolution needed for different types of high-
lights. In addition, increasing prompt diversity integrated
with a feedback loop could improve the prompt’s clarity for
a more accurate and reliable highlight detection.
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